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A cube-octahedral cluster within the anionic sublattice is proposed as an extended defect in the 
A&F,,, phases (A = K, Rb; M = Y, Bi). A computer simulation technique is used starting from 
crystallographic data to determine their validity and to evaluate some physical properties. A simula- 
tion study of new point defects in alkaline-earth fluorides doped with tetravalent cations is developed. 
The cube-octahedral cluster is shown to be stable when it is introduced within the fluorite lattice. A 
mechanism is proposed for its formation on the basis of the aggregation of simpler defects. 

I. The AM& Phases (A = K, Rb; 
M = Y, Bi) 

1. INTRODUCTION 

The fluorite-type structure (CaFz) is well 
known for its ability to accommodate a 
large number of interstitial anions when the 
divalent cation is substituted by a tri- or 
tetravalent one (14). This structure is ac- 
tually adopted by a certain number of com- 
pounds in which the cationic site is occu- 
pied by monovalent and trivalent ions, 
namely the ABiF4 (A = K, Rb, Tl) phases 
which adopt the CaF2-type structure at high 
temperature (5). Just like alkaline-earth flu- 
orides, ABiF4 phases can accommodate su- 
pernumerary fluorine ions leading to 
disordered solid solutions of formula 

Al-xBixF1+ti as well as to ordered ABi3FI0 
phases (6, 7). A structure has been pro- 
posed for these phases (KY3Fr,,-type struc- 
ture) (8). 

KY3FI0 crystallizes in the Fm3m space 
group with 2 = 8; 1: 3 ordering is estab- 
lished between K+ and Y3+. It is character- 
ized by the repetition in the three space di- 
rections of [KY3F#+ and [KY3Fr2]*- 
groups. Whereas the “Fs” motifs are cubic 
the “F12” motifs form a cube-octahedral 
cluster (Fig. 1). 

The aim of this work is to study the sta- 
bility of the cube-octahedron as an ex- 
tended defect in the AM3FI0 phases. We ex- 
amine this problem using theoretical 
simulations. The computer codes that have 
been used are PLUTO for the perfect Jat- 
tice and CASCADE for the defect lattice 
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FIG. 1. Association of a fluorite-type and of a cubo- 
octahedral clusters of the anions in the KY3FI0 phases. 
0, Bi; 0, A(K., Rb); 0, F. 

(see section II) (9). The formalism of these 
programs is discussed on the basis of the 
Born-Von K&-man theory of the ionic crys- 
tal (10) and by Lidiard and Norgett (II). 

In a material of largely ionic character 
the prevailing contribution to the cohesive 
energy is of the Coulomb-type. It can be 
considered as resulting from the interaction 
between charged and physically distinct 
ions. In a first approximation, all other in- 
teractions can be represented by short- 
range potentials acting between adjacent 
pairs of ions. Thus, the lattice cohesive en- 
ergy per unit cell is 

where V(Q is a short-range potential and rij 
the interionic separation between i and j 
ions. 

It is well known that the calculation of 
the electrostatic component of the lattice 
energy involves the evaluation of the Made- 
lung constant. Direct summations over the 
positive and negative ions can only yield an 
oscillating series whose terms decrease ex- 
tremely slowly. This leads to numerical 
problems. In the computer codes used in 
this study, Coulomb sums are evaluated us- 
ing the Ewald method (22) in which rapid 
convergence is assured by a transformation 
to reciprocal space. 

The computer codes used combine accu- 
rate calculations of lattice energies with effi- 

cient minimization procedures to generate 
the lowest energy configuration of a pro- 
posed structure. A number of closely re- 
lated computer codes are available for such 
works (PLUTO, METAPOCS, CAS- 
CADE); their methodology is discussed in 
detail in Ref. (9). As noted the PLUTO and 
CASCADE codes were used in the present 
study. 

2. MICROSCOPIC MODELS FOR IONIC 
REPRESENTATION 

Two principal models are used to de- 
scribe ionic properties in current simulation 
codes. These are as follows: 

A. The Rigid Ion Model 

This model assumes the particles to bear 
the full ionic charges (24). Ion polarizability 
is ignored. The optical dielectric constant is 
ECC = 1.0. The static dielectric constant can 
be fitted to the experimental value by using 
a short-range interionic potential of the 
Born-Mayer-type (20): 

V(rij) = A eXp(-rij/p) - C/r: 

where A, p, and C are, respectively, a pre- 
exponential overlap repulsive term, a hard- 
ness factor, and a van der Waals constant 
for induced dipole-dipole attractions. The 
approximation of the Rigid Ion is very help- 
ful when the calculation requires the simu- 
lation to be achieved by successive steps. 
This is actually the case in the Molecular 
Dynamics calculations (15) which are 
highly demanding in computer time. 

B. The Shell Model 
This model, first introduced by Dick and 

Overhauser (26) and further developed by 
Axe (27) and Cowley (18) accounts for 
ionic polarizability through a mechanical 
model. The ionic charge is shared between 
a core (the nucleus plus internal electrons) 
X(e) and a spherical nondeformable shell 
(external electrons) Y(e), so that (X + Y)(e) 
= Z(e). The shell is bound to the core by a 
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TABLE I 

SHORTRANGEAND SHELLMODELPOTENTIALPARAMETERS USEDFORAM~F~~ (A = K,Rb;M = Y,Bi) 

Pairs of ions 
k 

(eV k2) Y(e) 

K+-F- 1,958.80 0.2865 0.0 86,032.O - 85.55 
Rb+-F- 961.00 0.3334 0.0 121,460.O - 125.30 
y3+-F- 1,635.60 0.3023 0.0 105.50 6.58 
Bi3+-F- 721.13 0.3580 0.0 105.50 6.58 
F--F- 1,127.70 0.2753 26.8 37.98 - 1.339 

spring of constant k. If b is the relative dis- ion), at the end of the calculation, although 
placement of the shell with respect to the the unit cell dimensions are held fixed. A 
core, the potential for self-interactions relaxed structure results with new atomic 
within a given ion is positions and minimum energy. 

V(b) = Bkb2 

This potential is harmonic. It acts in addi- 
tion to the short-range potential. The polar- 
izability (Y is proportional to (Y(e))*/k. 

Table IIA shows the results of the relaxa- 
tion for the three phases. The following ob- 
servations arise upon examining the 
results: 

We shall be mainly concerned in this 
work with the Shell model. 

(a) The starting atomic positions (8) are 
in good agreement with those obtained after 
relaxation of the structure; 

Both short-range potential and Shell- 
model potential parameters, i.e., C, k, and 
Y, can be fitted to the lattice properties of 
the crystal: lattice formation energy, elastic 
and dielectric constants using adaptations 
of the PLUTO code (9). 

The preexponential repulsive factor A 
and the hardness factor p, can be obtained 
for specific interactions between isolated 
ions of opposite or identical charges using 
the nonempirical “electron-gas” method 
(19) which treats the electron density as a 
degenerate Fermi-gas. 

(b) The average value of the Fir (48i) co- 
ordinates (0.50, 0.34, 0.34) is confirmed by 
the neutron diffraction investigation of the 
fluorite-type solid solutions A,-,BiXF,+L, (A 
= K, Rb) (20) for the interstitial anions. 
This suggests the formation of cubo-octahe- 
dral “precursors” in the apparently disor- 
dered solid solution domain (see section II); 

The values of the parameters used in our 
investigations on the AM3FI0 phases are 
listed in Table I. 

(c) The anionic sublattices (32f) and (48i) 
are affected by relaxation. Such a result is 
to be expected for this class of materials 
which are fluorine fast ionic conductors (6), 
although we are merely concerned here 
with static calculations. 

3. THE ORDERED PHASES: KY3FI0, 
KBiJFi,,, AND RbBi3F10 

In all three cases, the minimization pro- 
cedure was started from the structural pa- 
rameters reported by Pierce and Hong (8). 
The method uses iterative cycles requiring 
zero internal strains (zero force on each 

Table IIB gives the calculated physical 
constants (i.e., lattice formation energy, 
elastic constants and dielectric constants) 
for the ordered phases. The zero internal 
strains obtained with the relaxed coordi- 
nates (Table IIA) employing the parameters 
presented in Table I suggest that the calcu- 
lated physical properties will be reliable. 
Such physical properties are probably diffi- 
cult to evaluate experimentally, due to diffi- 
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TABLE II 

A. ATOMIC POSITIONS IN AMXFlo PHASES BEFORE AND AFTERRELAXATION 

Before relaxation After relaxation 

Atom 

MK Rb) 

NO’, Bi) 
FU 
FiI 

(84 

We) 
(32f) 
W-V 

(Ref. (II)) 

(%,a,%) 
(~A~~ 
(x,0,0); x = 0.2401 
(u,u,u); u = 0.1081 
(I,u,u); u = 0.3353 

KYP,o 

(%A,%, 
(f,W 
x = 0.2388 
u = 0.1095 
u = 0.3395 

KB@,o 

(a,%,%) 
(&3,t) 
x = 0.2402 
u = 0.1110 
u = 0.3399 

RbBiSFlo 

(%A%) 
ca,ui~ 
x = 0.2403 
u = 0.1095 
u = 0.3408 

B. CALCULATEDPHYSICALCONSTANTSFORTHE AM,Flo PHASES 

Material 

Cohesive 
energy, UL 

(ev) 

Elastic constants 
(10” dyne. cm-*) 

Cl1 Cl2 c44 

Dielectric 
constants 

ES &CC 
Bulk-lattice 

strains 

KY,F,o -41.57 14.54 6.30 5.66 8.705 3.53 0.005 
KBisFto -39.31 11.69 5.44 4.55 11.690 3.48 -0.009 
RbBiSFlo -39.16 11.28 5.09 4.26 10.714 3.48 -0.002 

a Constant volume energies calculated per cation. 

culties in obtaining adequate single crys- 
tals. This illustrates one of the important 
aspects of computer simulation of solids. 

Finally, the values of U (eV) obtained for 
the three ordered phases are clearly reason- 
able when compared with the correspond- 
ing ordered AZ92 fluorides (AE = Ca, Sr, 
Ba): UC+ = -26.76 eV, UsrF2 = -25.33 
eV, Ua+ = -23.81 eV (22). 

4. CONCLUSIONS 

The calculations summarized in this sec- 
tion clearly confirm the stability of the 
cube-octahedral cluster as a building block 
in ordered anion-excess fluorite phases. 
They show, moreover, that our computa- 
tional methods can accurately reproduce 
the structure of these phases. This encour- 
ages confidence in the use of the methods 
for the more subtle structural problems 
posed by the related disordered systems. 

II. A New Point Defect in Alkaliie-Earth 
Fluorides Doped with Tetravalent Cations 

1. INTR~~U~TI~N 

The physical properties of defective an- 
ion-excess fluorides with fluorite-type 
structures have been subject to exhaustive 
studies (25-27). Structural (28) and funda- 
mental (29) aspects of the defects occuring 
for very low dopant concentrations within 
the alkaline-earth fluoride matrix (< 1%) are 
now well understood (23). For instance, the 
pair defects “nn” (nearest neighbor) and 
“nnn” (next nearest neighbor) (Figs. 2a 
and b) are well established from EPR stud- 
ies (30) and theoretical calculations (29). 
However, for high rates of dopant concen- 
trations (>15%), the models proposed to 
account for clustering of point defects (31) 
are far less definite. 

Therefore it seemed worthwhile to inves- 
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FIG. 2. Structures of the pair defects. 

tigate new defect models consistent with 
any domain of concentration. On the other 
hand, we have previously shown (section I) 
that cube-octahedral complex defects yield 
a stable configuration in AM3Ft0 phases (A 
= K, Rb; M = Y, Bi). 

Specifically we will perform calculations 
for the U4+/CaF2 solid solution using the 
potential parameters for this system re- 
ported in Table III. 

2. TREATMENTOFTHE DEFECTIVE 
LATTICE 

The response of a perfect lattice to the 
introduction of a defect can be visualized 
through relaxations of the ions in order to 
adopt a new stable configuration, with a 
minimum of energy. These relaxations af- 
fect most directly the defect itself and a 
small region surrounding it. They decrease 
fairly rapidly for distances away from the 
defect. Thus it is convenient to partition the 
crystal into an inner Region I in which the 

lattice configuration is evaluated explicitly 
and an outer Region II which can be viewed 
from the defect as a dielectric continuum. 
The defect formation energy can be evalu- 
ated from the difference between the en- 
ergy of the final configuration and that of 
the perfect lattice 

Automated computer codes (HADES III, 
CASCADE) are available for such defect 
calculations. Their reliability is demon- 
strated in a large number of studies of ionic 
materials (9). The CASCADE code was 
used in the present study. 

TABLE III 
SHORT RANGE AND SHELL MODEL POTENTIAL 

PARAMETERS USED FOR CaF2(U4+) 

A C 
Ion pairs (eW (i, (eV A-9 K(eV~A-*) Y(e) Ref. 

CaZ+-F- 1329.6 0.2979 0.0 390.90 5.24 (34) 
,,4+-F- 1755.6 0.3304 0.0 103.38 6.64 (24 
F--F- 1127.7 0.2753 19.65 101.2 -2.38 (35) 



CLUSTERS IN THE FLUORITE LATTICE 119 

TABLE IV 

A. FORMATION ENERGIES (eV) OF ISOLATED DEFECTS AT CONSTANT VOLUME 

Defect 

Anion Anion Anion Cation 
vacancy interstitial Frenkel pair vacancy U4+ subst. 

Formation energy 5.76 -3.12 2.64 23.60 -44.19 

B. DEFECT PAIR FORMATION AND BINDING ENERGIES (eV) PER SUBSTITUTIONAL 
CATIONINC~F~:LJ~+ ATCONSTANTVOLUME 

Defect 

nn pair 
wo) 

nnn pair 
(111) 

Angular 
dimer 
nn*nn 

Angular 
dimer 1:3:1 

nnwnn trimer 

Formation energy -48.69 -48.09 -53.77 -52.45 -53.61 
Binding energy - 1.39 - 0.79 - 3.35 - 2.02 - 5.82 

3. POINT AND PAIR DEFECTS 

We have primarily considered the point 
defects (anion vacancy, anion interstitial, 
cation vacancy, U4+ substituent) and the 
pair defects nn and IZMZ. The results of the 
calculations are given in Table IV. The fol- 
lowing observations arise upon their analy- 
sis: 

The nearest-neighbor pair 1211 is energeti- 
cally favored with regard to the next-near- 
est-neighbor pair nnn. On the other hand, 
we have calculated the formation energy of 
the angular dimer formed by the association 
of two interstitials (~zlt, nn) and (nn, nnn) 
(Table IV). The angular dimers are more 
stable than the elementary pairs and the 
(nn, nn) dimer is favored in comparison to 
the (nn, nnn) dimer. The structure of the 
(nn, nn) defect is shown in Fig. 2c before 
and after relaxation (which is indicated by 
arrows). This leads us to a more detailed 
study of the angular dimer. 

The replacement of Ca2+ by U4+ involves 
the introduction of two fluorine ions in in- 
terstitial sites. The relaxation of such a con- 

figuration leads to an attraction of the inter- 
stitials by the substitutional cations and to 
the shift of two F- at normal positions (on 
both sides of the plane formed by the dimer) 
into interstitial positions (Fig. 2~). Such a 
behavior corresponds to the substitution 
mechanism proposed in the neutron diffrac- 
tion studies of the fluorite-type solid solu- 
tion PbI-xThxF2+2r (32). 

The relaxation of the angular dimer leads 
to strong relaxations within the anion sub- 
lattice around the defect. Such a disorder- 
ing is probably favorable for enhanced ionic 
motion. 

4. THE 1: 3 : 1 TRIMER 

Examination of the angular dimer within 
the unit cell before and after relaxation 
leads to several important features: 

Before relaxation the immediate sur- 
rounding of U4+ is formed of two intersti- 
tials (F$ explicitly introduced and one fluo- 
ride ion (F;)A occupying a normal site. 
They may be differentiated by their posi- 
tions and consequently their distances to 
the substitutional cation (Table VA). 
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TABLE V 

A. BOND DISTANCES AND ANGLES IN THE ANGULAR 
DIMER nn*nn 

Before 
relaxation 

After 
relaxation 

0 
duea-WW (4 0 
duca-(Wa (4 
(Fir)-U-(Fir) angle 
(FA-U-(Fh) angle 
‘&,-VFI (& 

2.725 2.329 
2.360 2.323 

90 72.0” 
54.73” 68.6” 

- 2.36 

B. BOND DISTANCES AND ANGLES IN THE 1: 3 : 1 
TRIMER 

du,;3F;, @I 
‘kc,-VF, (4) 
duCa-UF, (A) 

Before After 
relaxation relaxation 

2.725 2.319 
2.360 2.360 

90 71.7” 

After relaxation these three fluorine ions 
are nearly equivalent (Table VA), which is 
the consequence of a large shift of the 
above mentioned (FL)* anion into an inter- 
stitial position with creation of a vacancy 
Vq. It is to be noticed that the other Fi 
anions are only slightly affected by relaxa- 
tion phenomena. 

The similar distances between Uc, and 
the three relaxed F- ions and the close val- 
ues of the F-U-F angles have led us to con- 
sider a new type of defect which will be 
called the 1: 3 : 1 trimer (nn, nn, nn) involv- 
ing, respectively, one Ug, 3 equivalent F, 
and lVr, (Fig. 3). This configuration is elec- 
trically neutral. 

We have simulated it by inserting inter- 
stitials at ideal lattice positions (4, 0, 0) and 
by creating a vacancy at normal position (4, 
&a>. Its relaxation yields a stable configura- 
tion very close to that of the relaxed angu- 
lar dimer (Table VB). 

The observation of both configurations, 
angular dimer and 1: 3 : 1 trimer before and 
after relaxation, shows that the out-of- 
plane relaxations occur in the bisecting 

FIG. 3. The 1: 3 : 1 trimer. 

plane (110) (Fig. 4) and that the final posi- 
tions in that plane (A, and B,) together with 
the initial ones (A and B) form a sequence 

FIG. 4. Schematic correlation between the struc- 
tures of the angular dimer and of the I : 3 : 1 trimer. 
Assignments of the F- anions: A, F; (0.25, 0.25,0.25) 
angular dimer, unrelaxed; A,, Fu (0.15, 0.15, 0.38) an- 
gular dimer, relaxed; B, Fu (0.0, 0.0, 0.5) 1 : 3 : 1 tri- 
mer, unrelaxed; B,, F, (0.09,0.09,0.44) 1: 3 : 1 trimer, 
relaxed. 
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TABLE VI 

A. BINDING ENERGY CALCULATION (CONSTANT VOLUME) 

Formation energy of the defect: -446.0945 eV 
Total binding energy = -446.0945 - (Energy of 8 anion vacancies 

+ 12 Interstitial anions + 8 Substitutional cations) 
= -446.0945 - (+ 8(5.76) - 12(3.12) - 8Ql4.19)) 
= -101.21 eV 

Binding energy per substitutional cation = - 12.65 eV 

B. ATOMIC COORDINATES IN THE CUBO-OCTAHEDRAL CLUSTER 

Species 

G 

VF* FiI 
Ch 

Population Coordinates before relaxation Coordinates after relaxation 

8 0.0 0.0 0.0 

0.25 z 

-0.065 -0.065 -0.065 i3 

8 0.25 0.25 0.25 0.25 0.25 12 0.335 0.335 0.360 0.360 0.5 : 
6 0.0 0.5 

0.5 s 
0.5 0.111 0.5 0.5 3 

C. BOND DISTANCES (d;) IN THE CUBO-OCTAHEDRAL CLUSTER 

Before relaxation 

2.869 
2.035 
2.582 

24.353 

After relaxation 

2.710 
2.249 
2.829 

32.00 

pointing out the close relationship between 
the dimer and the trimer. 

The calculations of the formation and 
binding energies of the 1: 3 : 1 trimer given 
in Table IVB show that it is favored with 
regard to all other defects so far studied. 
We can thus suggest that the formation of 
this new type of defect must follow immedi- 
ately that of the angular dimer (nn, nn). 

5. THE CUBO-OCTAHEDRAL CLUSTER 

From the structure of the AM3F10 phases 
which is closely related to the fluorite-type 
structure (CaFz), it appears reasonable to 
suggest a complex defect likely to occur 
within CaF2 itself: the cube-octahedron. 

Formally in CaF2 the anionic sublattice is 
modified by creating 8 vacancies at normal 
sites and inserting 12 interstitials in the 

same manner as in KY3Fro (see Part I). The 
relaxation of such a configuration leads to 
satisfactory convergence. However, the 
binding energy of a cluster where the cat- 
ionic sublattice would not be modified is 
positive: the Fn cluster is not bound. On 
the contrary the relaxation of the effective 
[Ca3UF,J2- cluster (U4+ replacing Ca*+ at 
the fluorite-type cube corners) yields a 
valid minimization of the energy as well as 
a stable configuration. The binding energy 
of the defect is found to be -12.65 eV. 

Table VIA shows the detailed calculation 
of the binding energy. We should state that 
this value is approximate, since the forma- 
tion energy of a defect is sensitive to the 
radius chosen for Region I, i.e., the region 
where ionic interactions are evaluated ex- 
plicitly (see Ref. 36). With regard to the 



FIG. 5. Formation of the [Ca&JF12]2- cluster by as- 
sociation of 1 : 3 : 1 trimers. 0, F;,; 0, Ca; 0, Uc,. 

large dimension of the cube-octahedral de- 
fect a bigger radius may be preferable for 
Region I. Nevertheless the large difference 
between the binding energies of the cubo- 
octahedron on one hand (-12.65 eV) and 
the 1 : 3 : 1 trimer (-5.84 eV) suggests that 
the cluster will be stable. 

Table VIB and C give the relaxed atomic 
coordinates and the inter-ionic distances in 
[Ca3UF1J2-. The relaxed F+tF; shortest 
distances (2.829 A) are larger than in 
KY3FI0 where they are equal to 2.685 A. 
This is probably due to the higher charge of 
the U4+ substitutional which attracts the in- 
terstitial anions. In fact the relaxation 
results in an expansion of the cubo-octahe- 
dron. 

Needless to say that the [Ca3UFt2]*- mo- 
tif has to be electrically compensated by a 
[Ca3UFs]*+ motif (Fig. 1). 

The cube-octahedral cluster has been 
successfully simulated as well in SrF2 and 
BaF2 doped with the tetravalent cations. 

6. DISCUSSION 

In former sections the investigation of 
the structure of the relaxed angular dimer 
has shown its direct relationship with the 
substitution mechanism proposed by neu- 
tron diffraction investigations (9). On an- 
other hand the stability of the 1: 3 : 1 trimer 
with respect to the dimer has been proved. 

An increasing amount of substitutionals 
in the structure of CaF2 should thus lead to 
an increasing number of 1 : 3 : 1 trimers and 
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further on to their clustering. This, we sug- 
gest, occurs through the formation of the 
cube-octahedron by associating 8[&F3VF] 
defects, i.e., eight 1 : 3 : 1 trimers by sharing 
Fit interstitials two by two. This result is 
illustrated in Fig. 5. 

Such a mechanism needs a crystallo- 
graphic support. Nevertheless the forma- 
tion of the cube-octahedron as a complex 
type of clustering seems to be well estab- 
lished. The assumption made by Pierce and 
Hong (Ref. (8)) that “. . . Such isolated 
subcells (cube-octahedral motifs) in the flu- 
orite-type lattice are bound to occur upon 
doping” is now demonstrated crystallo- 
graphically by a recent investigation of the 
“Tveitite” mineral by Bevan et al. (33). 

Following Bevan et al. we suggest that 
the formation of the cube-octahedron is 
prior to the onset of ordering which can 
only be total when the number of cubo-oc- 
tahedral motifs becomes sufficient. This is 
the case for the AM3F10-ordered phases. 

Notes added in proof. (i) In a paper to be published 
shortly in this general area we show that the stability 
of cube-octahedral motifs relative to that of smaller 
defect clusters depends on the radius of the dopant 
ion. (ii) The binding energy calculated in Table VI as- 
sumed preexisting vacancies. If it is assumed that 
these vacancies are created during the formation of the 
cluster, the binding energy per cation is reduced to 
10.01 eV. 
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